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Abstract. We decompose the quark propagator in the presence of an arbitrary gluon field with respect to
a set of Dirac matrices. The four-dimensional integrals which arise in first order perturbation theory are
rewritten as line-integrals along certain field lines, together with a weighted integration over the various
field lines. It is then easy to transform the propagator into a form involving path ordered exponentials.
The resulting expression is non-perturbative and has the correct behavior under Lorentz transformations,
gauge transformations and charge conjugation. Furthermore it coincides with the exact propagator in first
order of the coupling g. No expansion with respect to the inverse quark mass is involved, the expression can
even be used for vanishing mass. For large mass the field lines concentrate near the straight line connection

and simple results can be obtained immediately.

1 The quark propagator

The quark propagator S(z,y; A) for a quark of mass m in
the presence of a gluon field A* plays an important role
in many investigations of quantum chromodynamics. It
appears, e.g., if one considers the quark four-point Green
function, the basis of all modern investigations on quark-
antiquark interactions, and integrates over the quark
fields. It is defined by!

Sap(@,y; A) = —i{0|T (¢a(2)Ps(y))[0).

The spinor indices «, 8 will be dropped in the following.
We recall the relevant properties of the propagator. With
the covariant derivative D, (z) which acts on operators to

the right, and B# (y) which acts on operators to the left,
defined by

(1.1)

Do(a) = 5o — i94u(@),
—
—* 0 .
u W) = N +igAu(y), (1.2)
the field equations give
[iv" Dy (x) —m]S(z,y; A) = 6 (2 —y),
ok
S(x,y; A)[=iv" D, (y) —m] =W (z —y). (1.3)
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1 Our formulae are given in Minkowsi space, we use Bjorken
Drell conventions [1], and the field tensor is defined by F,, =
OuAy — O A, —ig[Au, A

These equations may be reformulated as integral equa-

tions:
/S z,z; A)vH AL (2)
xSo(z — y)d*z

S(z,y; A) =
= Solz =)~ 9 [ Solo — 217" 4,02
xS (z,y; A)d*z, (1.4)

with Sy the free propagator. From charge conjugation one
has

Sol‘—

S(a,y; A) = 7*70ST (y, ;- AT (L5)
Finally, under a gauge transformatlon Y=Y =e Qw @
— ) = 1he O, A, = A, = eZOA e — (i/9)(9, € )
e Z@, the propagator transforms as

S(x,y; A) = S (2,y; A) = € S(x,y; A)e €W (1.6)

An exact solution for S(z,y; A) for an arbitrary gluon field
A, is not available. However, it would be highly desirable
to have an approximation which respects the fundamen-
tal properties of the propagator, in particular the correct
transformation under Lorentz transformations and under
gauge transformations.

The two well known approximations, perurbation the-
ory and the static approximation, either violate gauge co-
variance or Lorentz covariance:

Perturbation theory: Iteration of (1.4) gives the pertur-
bation series

S(z,y; A) = So(x —y /SO x— 2)7"AL(2)

xSo(z—y)d4z+~~ (1.7)
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Any finite order of the perturbation series gives the
correct behavior under Lorentz transformations and
under charge conjugation. It will, however, never be
able to describe central features of QCD like confine-
ment. In particular, it clearly violates gauge invariance;
no truncation of the perturbation series (1.7) has the
correct transformation property (1.6).

Static approximation: Following the pioneering work of
Brown, Weisberger [2] and Eichten, Feinberg [3], one
neglects the spatial part iy™D,,(x) in (1.3). The par-
tial differential equation then becomes an ordinary dif-
ferential equation which can be solved in closed form.
This leads to the static approximation

0

. 1
Surar(sy: A) = —i {e<xo ) 6 — a0)

0
Xl 27 }5(3)(X_y)e—imwo—yop

X exp {ig /yz Ao(z)dzo} .

The path in the line integral is the straight line from
y to x, and the path ordering orders Ag(x) to the left,
-+, Ap(y) to the right.

The neglected spatial term iy™ D, (x) in (1.3) can sub-
sequently be taken into account as perturbation. This
approach has been extremely succesful (see e.g. the re-
view [4]). It can be easily generalized to quarks moving
with four velocity v#, and thus is the direct predecessor
of heavy quark effective theory. Succesful combination
with perturbation theory has also been made more re-
cently (see [5] and references therein). For quarks mov-
ing with high momentum a related formula can be de-
rived from the eikonal approximation [6].

The static approximation and it’s generalizations are
non-perturbative and have the correct behavior under
gauge transformations and under charge conjugation.
However, they drastically violate Lorentz invariance.
Therefore the static approximation is useful for heavy
quarks only. It needs quite an effort to recover the re-
lations following from the original Lorentz invariance
subsequently [4,7]. Finally the static approximation
does not coincide with the exact propagator even in
the trivial case of vanishing gluon field.

(1.8)

It is obvious that a gauge covariant propagator should
contain path ordered exponentials as in (1.8). Using just
the path along the straight line between x and y would give
a Lorentz covariant result, but such a procedure would be
far too simple. It would involve the vector potential only
along the straight line connection and nowhere else, which
is clearly unphysical. We prefer to proceed systematically
by rewriting perturbation theory in a suitable way. It can
then easily be transformed into a gauge covariant expres-
sion by simple exponentiation, while keeping the correct-
ness of perturbation theory in the relevant order. The non-
perturbative approximation for the quark propagator ob-
tained in this way has the following properties:

— Correct behavior under Lorentz transformations.
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— Correct behavior under gauge transformations.

— Correct behavior under charge conjugation.

— Agreement with perturbation theory in first order of
the coupling.

The representation is a weighted superposition of path
ordered exponentials between = and y along well defined
field lines. We don’t need to assume that the quark mass is
large, we could even put it equal to zero. This opens per-
spectives to applications which were hard to attack previ-
ously.

The paper is organized as follows:

In Sect.2 we decompose the propagator with respect
to Dirac matrices, and write the formula of first order
perturbation theory in a form which is convenient for
the following. In Sect.3 we rewrite the four-dimensional
space-time integrals which arise in perturbation theory as
weighted superpositions of line integrals over certain field
lines which all run from z to y. From this form one can
simply derive a representation in terms of superpositions
of path ordered exponentials. This representation coin-
cides with perturbation theory up to order g and has the
correct behavior under gauge transformations. In Sect. 4
we evaluate the weight function explicitly and show a plot
of the field lines for different masses. We discuss the limit
of large mass m, and give some first simple applications.
Actual applications will be given in forthcoming papers.

2 A useful form
of first order perturbation theory

We start with the first order approximation (1.7), and ex-

press the free propagators Sy by the free scalar propagator
A in the following way:

So(x — 2) = Az — 2)[—iv 5 [0z, +m],

So(z —y) = [i720/0zx + m]A(z — y). (2.1)
The free scalar propagator satisfies the equation
(9,07 + m*) A(z) = —6@W (). (2.2)

In the following all differential operators in the integrand
are understood as differentiations with respect to the vari-
able z.

Using the well known identities v,v,, = gy, —t0,,, and

VoY IA = Gup VA — GuAVu + GurVv + ieuu)\n")/ ~", one can
write the propagator in form of the familiar decomposition
S(x,y; A) = s+ p7y° + iy + @Yy, + 0y, (2.3)

Before giving the expressions for s, - - -, t*” which result
in this way, it is convenient for later use to define a scalar
field u(z; z,y) and a vector field ut(z;x,y) by

u(z;z,y) = Alx — 2)A(z — ), (2.4)
and (with 3#:5 /0z,— 5 /0z,)

W(za,y) = —A @ - y)[A@—2) 8 Alz—y)]. (25)
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From (1.7), (2
equations:

.1), and (2.3) we then obtain the following

s =mA(x —y) [1 + ig/u”(z;x, YA (2)d 2|, (2.6)
p=0, (2.7)
%8/83:“A(:E

ot =

v) = 58— 1) 5 /0y,

VS —A
—g/ {A(m—z) [ng“”—l- 90 —oxg"™o

198 |a }A,, (2.8)
at = zge””’\”/ [ (x — 2) 5,.; Ox Az — )}

XAy ( (2.9)
= /{8 u(z; 2, 9)Au(2) — (p < v)}d*z. (2.10)

We next transform v* in (2.8), we denote the four terms
in the second line by v +v4 +v§ + v}'. In v4 one can use

—H —H —H —H

0.=— 0y, in vf correspondingly 9,= — 9,. The differ-
entiations with respect to y and x can then be taken out-
side of the integral. The term v} is split into two identical
contributions, in the first one we use (2.2) for A(z — z2),
in the second one for A(z — y). Next perform a partial
integration on one of the derivatives in the d’Alembert
operator. The terms where the differentiations act on the
other A cancel against the contribution vf, and one has
the intermediate result

ot 4ol =LA@ = y){A"(@) + A" ()}
—% /8,\u(z;x,y)[8)‘A“(z) — " AN 2))d 2

—% /8Au(z;x,y)8“A>‘(z))d4z (2.11)

We subtraced and added the term 9" A*(z). In the second
line we can then replace 0*A*(z) — O AMN(2) by F M (z),
which only introduces a higher order error O(g?). Fur-
thermore the differential operator 95 = 05 which acts on
u(z;z,y) can be replaced by — (9% 4+ %) and taken out-
side of the integral. In the third line we perform a partial
integration on 9*, shift the differentiations from the vari-
able z to x and y, and take the differentiations out of the
integral. After these manipulations v* can be expressed
in a rather compact form if we replace partial derivatives
by covariant derivatives which introduces a correction of
order g2 only:

f— g0 { a6 Lo [ et |
—% {A(x ) [1 + ig/u"(Z;w,y)Au(Z)d4Z] }
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-4 [uag)p @' b, () (212

“
In a* we perform a partial integration with respect to 9,

or 5 £, take half of the sum of both terms, antisymmetrize
the 0,4, (2) or 9xA,(z) in the integrand, and introduce
the field strength tensor Fj,, (z) or F),(z) as before. Shift-
ing again the differentiation from z to x and y we have in
order g

at = %EWM {DA(I)/U(Z;I7y)Fvn(Z)d4Z

—/u(z 2,9)Fon(2)d"z Dy (y )} (2.13)
Similar manipulations applied to t** finally give
v — _% / w(z z,y) ™ (2)d = (2.14)

The decomposition (2.3), together with the formulae (2.6),
(2.7), (2.12), (2.13), (2.14) is now in a form which allows
to rewrite the four-dimensional integrations d*z as a su-
perposition of line integrals.

3 Gauge covariant reformulation

The vector field u”(z;x,y) defined in (2.5) satisfies the
fundamental equation

out(z;2,y)
Ozt

— Dy =i (z—a),  (31)
which is a simple consequence of (2.2). Therefore u* may
be interpreted as a four-dimensional velocity field of an
incompressible fluid with a point-like source at y and a
sink at . The stream lines z#(s, w), which all run from y

to x, are defined by the characteristic equations

dz*(s,w)

Is = ut(z(s,w)).

(3.2)
Here s is the parameter which describes the motion along
the stream line, while the three dimensional parameter
set w characterizes the various stream lines. To make s
unique, it is convenient to fix s = 0 at the symmetri-
cal point of the stream line which has equal distance to
x and y. The dependence on x,y has been suppressed
in the notation. There is precisely one field line passing
through every space time point, except, of course, for the
source points x and y. After having solved (3.2) there
is a unique correspondence between the 4-dimensdional
space-time coordinates z# and the parameters s, w, i.e.
(20,2122 23) & (s, w!, w?, w?).

We next write the four-dimensional integrals over d*z
which appear in s and the first two lines of v* ((2.6)
and (2.12)) as integrals over dsd®w, the Jacobian is called
p(w):

(20, 21, 22, 23)

%) = st w2, wd) 3.3)
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We have anticipated the crucial fact that p does not de-
pend on the curve parameter s. This is a direct conse-
quence of the incompressibility of the flow, and easily
proved from the following geometrical argument. Take an
infinitesimal four-dimensional box in (s, w)-space with
corners (sg, w) and (sg+ds, w+dw). In z-space this corre-
sponds to a an infinitesimal region with a certain volume.
Consider now the motion of this volume along a field line
from sg to s1, keeping w, dw and ds constant. Because of
the vanishing divergence (3.1) outside the sources, the vol-
ume in z-space stays constant, the volume in (s, w)-space
stays constant anyhow by construction. This demonstrates
that the Jacobian (3.3) is indeed independent of s.
We can therefore write

/u“(z;x,y)AH(z)d‘lz
~ [ o) | / " A, W) (=(5, w))ds | du

_ / p(w) MzAdz} .

Here\f;Adz is a shorthand notation for the line integral of
A, from y to x along the stream line characterized by the
parameter w.

The normalization of p(w) is easily obtained from the
special case A,(z) = 0,0(z), where both sides of (3.4)
can be immediately integrated. This gives

[ ptwidto =1

(3.4)

(3.5)

We are now in the position to rewrite the scalar function
s in (2.6):

s =mA(z — y) /p(w) {1 +ig ygIAdz} 3w  (3.6a)

=mA(z — y) / p(W)P exp {z’g ygildz] dBw

+0(g?). (3.6b)

This was the essential step of the approach! Once hav-
ing written the first order approximation in terms of line
integrals, exponentiation allows to promote it into a non-
perturbative gauge covariant expression.

One may wonder about the justification of this step
which led to a non-perturbative expression simply by ex-
ponentiation. It does not make sense to compare the two
lines in (3.6), because (3.6b) is gauge covariant while
(3.6a) is not. In fact one can easily see, e.g. for a suit-
able pure gauge, that (3.6a) can be made as large as one
likes. The correct question to be asked is whether (3.6b)
is a reasonable approximation to the exact propagator. To
answer this question one only needs to check the quality of
the approximation in some special convenient gauge. The
manifest covariance of the expression then guarantees this
quality for any gauge. A sufficient condition is the small-
ness of g\f;Adz for all relevant stream lines, which justifies
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the validity of first order perturbation theory. Clearly one
can always find a gauge where A,dz"* = 0 on one spe-
cial stream line, but it is not possible to do the same for
two or more lines. For heavy quarks the situation is sim-
ple. We will show in Sect.4 that in this case all relevant
paths lie near the straight line connection. If one chooses
a gauge such that A, (x—y)* vanishes along this line, and
if the variations of A, near this line are small, the ap-
proximation will be justified. In applications we have to
perform an integration over the gauge field A, at the end,
which involves the whole spectrum in momentum space.
Because there are only two scales available, m and Agcp,
one expects a good approximation if m >> Agcp.

For light quarks the lines spread out over the whole
space, and the above argument cannot be applied. But in
any case the step of exponentiation leading from (3.6a)
to (3.6b) can be interpreted as partially including higher
orders of the perturbation series, namely a minimum of
those necessary to guarantee gauge covariance. There are
good reasons to believe that gauge covariance is such a
fundamental principle that it may indeed be used to trans-
form perturbative expressions into non-perturbative ones
of physical relevance.

The expressions in the first and second line of v* can be
treated in exactly the same way. The integrals in the third
line of v*, as well as those in a* and t*” have a different
form, but the structure of all of them is identical. They
have a factor g in front, therefore one can introduce path
ordered exponentials without changing the result in order
g. To each z # x,y there belongs a unique s’ and w which
characterize it’s position s’ on the field line w. One can
write

o (' w) = P LaP (s w) e i fyfwz} }

+0(g?).

We have chosen the symbol s’ in z(s’, w) in order not to
mix it up with the curve parameter s in the path ordered
exponential. The color matrix F*”(z(s’,w)) has to be in-
cluded in the path ordering prescription with respect to
s of the field line characterized by w. In this way (3.7)
behaves correctly under gauge transformations.

Finally one has to multiply by u(z;z,y) and perform
the integration over d*z = p(w)ds’d®w, resulting in

/ u(z;z,y)gF* (2)d*z

(3.7)

- / p<w>u<z<s',w>>P{gF““<z<scw>>

X exp [ig ycyildz} }ds’d3w +0(g%). (3.8)

This type of integral is a generalization of the operator
insertions into a Wilson loop introduced by Eichten and
Feinberg [3] and later on widely used in the literature. It
is, however, more general, because the insertions are not
equally distributed along the path, but weighted by the
s’-dependence of u(z(s',w)).
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We summarize our representation for the quark prop-
agator: It has the decomposition (2.3) with

s =mA(x —y) / p(w)P exp {ig y&dz] 3w, (3.9)
p=0, ' (3.10)
Vi = %D”(m) {A(m —y) / p(w) P exp {ig fAdz] d%}

_% {A(m —y) / p(w) P exp [ig yg;ldz} d3w}

<D ()= 500 [ pw)ute(s',w)

x P {gF’“’(z(s’, w)) exp [ig ][ Adz} } ds'd®w
y

—% /p(W)U(«Z(S’,W))P{gF””(Z(SCW))

x ok
X exp [z’gyéAdz] ds'd*w D, (y),
y

?

@ = 46’”*”{&(%) [ otwyutats w)

(3.11)

x P { GF,.(2(s',w)) exp [ig ygmAdz] } ds' d*w
-/ p(w)u(z(s’,w))P{gFm@(s’,w))

X exp {igycAdZ] }dsldgw B: (y)},
y

v = -1 p(w)u(z(s',w))P{gF“”(z(s’,w))P

(3.12)

2

x
X exp {ig yé Adz] }ds’d3w.
y

We could have simplified the curly brackets {---} in v* by
s/m, but we left it in the present form in order to keep
it applicable also in the case of small or vanishing mass.
Obviously the last two lines in v* and the terms a* and
t*¥ contain the same types of insertions into path ordered
integrals.

Clearly the representation (2.3), (3.9)-(3.13) fulfills all
properties mentioned at the end of Sect. 1.

(3.13)

4 Weight function, stream lines,
and a simple application

It is now appropriate to switch to Euclidean space, i.e. put
20 = —ixk 2" = 2P 40 = 4P A = iy F In the following
the index F will be written explicitly only where it appears
appropriate. For the explicit calculations we make use of
the rotation symmetry around the vector (z—y),. Choose,
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Fig. 1. The plane spanned by the stream line, and the coor-
dinates introduced in the text (in the system where x — y has
a four-component only)

just for intermediate simplification of notation, a system
where (z —y),, has a four-component only and where x =
y = 0. It is then convenient to describe the vector z,
by it’s four-component z4, and ordinary three-dimensional
polar coordinates 7, @, ¢, i. e.

2z, = (rsin© cos ¢, 7sin Osin @, r cos O, z4). (4.1)

Let us now choose an appropriate parametrization of the
various stream lines. We classify them by the orthogo-
nal distance w of the line from the midpoint (z + y)/2
between the sources, and by the angles © and ¢, thus
d3w = dwdOdy. Figurel shows a stream line together
with the parameters introduced above.

The weight function p(w) defined in (3.3) becomes

O(z1,22,23,24) O(1,0,0,24)
A(r,0,p,24) O(s,w,0,9)

O(r, z4)

A(s,w)’

p(w,0) =

=7r?sin® (4.2)
It is now very convenient that p depends on w only, but
not on the curve parameter s. Therefore we can evaluate it
at a suitable point. We choose the symmetry point ¢ in the
middle of the stream line with the coordinates r = w, z4 =
(x+vy)a/2. At this point we obviously have 9r/0s = 0 and
Or/ow = 1, and thus 9(r, z4)/0(s,w) = —0z4/0s = —uy,
where we used the definition of the stream lines in (3.2).
This allows to write down the weight function in closed
form.

pw,0) = —w?sin @ uy(¢; z,y), (4.3)

with

Cu = (wsin© cos p, wsin O sin p, w cos O, (x + y)4/2).
(4.4)
Obviously u4(¢; x,y) is independent of the angles O, ¢.
It is convenient to put

p(w,0) = % sin @,

™

(4.5)

such that the weight function p(w) is normalized to

/Oo plw)dw = 1. (4.6)
0

We first give the resulting formulae for the special case
of vanishing quark mass which may be of some general
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interest:
AO) = = (17)
uOEe9) = g i)Q(z el (48)
ul e y) = - (xQ;g)Q { (x —(92)4(?ﬁ y)?
pe e
PO (w) = 20l — yi (4.10)

ml(z —y)?/4+ w]*
(0)

The maximum of 59 is at wmae = |x — y|/(2\/§)
We now come to the general massive case. The free
scalar propagator A then is

m
Az) = e Ki(max), (4.11)
which gives
2 K —z]) K —
w(zia,y) = 2 Kalmle Z2DEa(mlz = g) - )

1674 |z — z||z — ¥

With the relation (K;(z)/z) = —Ks(
function, one further obtains

z)/z for the Kelvin

u, (25, 2,9) (4.13)
_ mPlz—y {K2(m|wZI)K1(mlzy|)
Am2 Ky (m|z — y|) (x = 2)%z -y
Ki(m|r — z|) Ka(ml|z —

oo, 4 Fl |%_Z||>(Z_<y)|2 y|>(z_y)ﬂ}_

plw) (4.14)
:m2w2(az—y)2

Ka(my/ @ = g7+ w?) Ka(m/(a = 5?/A - w%)

: Ki(mlo = (e - y)2/4+ w37

The weight function p(w) is trivially suppressed for small
w by the volume element in polar coordinates, it rises to a
maximum at some wWy,qz, and decreases exponentially for
large w.

In Fig.2 we plot the function p(w) for fixed distance
|z — y| for various values of the mass. It is clearly seen
how the maximum moves to the left if the quark mass
increases.

In Fig.3 we show the stream lines of the vector field
u,, for four values of m|x — y|.

For vanishing mass the lines spread out widely in
space, up to w of the order of |z — y|. For increasing mass
they concentrate more and more to the straight line con-
nection. Apparently the product m|z — y| has to become
quite large, however, in order to get a sizeable concentra-
tion.
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w/lz =yl

0.2 0.4 0.6 0.8 1 1.2 1.4

Fig. 2. The weight function p(w) defined in (4.6). The distance
|x — y| is fixed, we show the curves for the mass values m|z —
y| =0,1,5,10,20. The maximum moves from right to left and
increases with increasing mass

The large mass limit will now be investigated analyti-
cally. We use the asymptotic behavior K, (z) ~ \/7/(2z)
e % for z — oo and get

1 vm

Az) ~ —§We_m”’ for m — o0, (4.15)
m e—mlla—zl+lz—yl]
DY) G T2l — 4l
for m — oo, (4.16)
w(ey) ~ L <m|_y|>/
T 2 \ 27|z — 2||z — ¥
{ (2 =Yy }
|z — Z\ T
« grnlla—yl—le—2|~|z—y]
for m — oo, (4.17)
A m3/2w2|x _ y|5/2
P ol — -+ P
o [m (o -4l -2/
for m — co. (4.18)

Obviously only w of order y/|z — y|/m are now of rele-
vance in the weight function. Therefore one may expand

the square roots and gets the simple result

3/2
16 < m > wzexp[
V2r \|z -yl

for m — oo.

R 2maw?
plw) ~ 7 y|]

(4.19)

This is just the picture which one expects for large mass.

Only stream lines near the straight line connection es-

sentially contribute, the maximum of p(w) is at wWpee =
|z —y[/(2m).

If the mass is large enough, such that the variation of
the gluon field in transversal direction becomes negligible,
all line integrals give the same contribution. The weighted
superposition over the paths can then simply be replaced
by the path along the straight line connection. This means
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2

C

|

-0.4}

d

Fig. 3a—d. The stream lines (3.2) for the cases (from left to right, top to bottom) a m|z—y| = 0, b m|z—y| = 5, ¢ m|z—y| = 20,

d mlr —y| =
0,40.5,+1,+1.5

that one has effectively a three-dimensional d-function in
transversal direction. The situation looks now similar to
the case of the static propagator but with an important
difference. While the static propagator (1.8) singles out
a special reference frame, our propagator is manifestly
Lorentz covariant. It is the vector (z — y), which spec-
ifies the direction of propagation.

This has a simple consequence. In the limit of large
mass, the scalar function s in (3.9) becomes

1 m 3/2 r
s~ —= | ——m— e~ ™r=Yl pexp —ig/ Adz|
2 \ 27|z — y| Y

(4.20)
with the Euclidean path along the straight line connecting
z and y.

Consider now the term s plus the first two lines of v#~,
in (3.11). This sum can be written as

1 B P B

8_27n<D,u(‘r)S_SDu (y))/yu
m 3/2 1+75(x_y);t/|x_y‘

27| — y 2

xe~ ™Yl P exp [—ig/ Adz] . (4.21)
y

In contrast to the e~™#4+=v4l of the static approxima-
tion which falls off with the euclidean time difference, our
e~ ==l falls off with the euclidean distance. This means

100. The sources at = and y are located at +0.5. We show the stream lines for the values of w/wWmax =

that the Hamiltonian is correctly given by the full rela-
tivistic energy. Furthermore we also get the correct pro-
jection operator for the y-matrices.

We finally discuss the terms a*,t*” in (3.12), (3.13)
which can be treated rather simply. We specialize to the
case x =y and put z4 —y4 = T > 0. In the large mass
limit we can replace p(w) by 6©)(w). The s'-integrations
can be written as follows:

!
u(z(s',0))ds’ = u(t)(il—idt
u(t) e~mT
= =— dt. (4.22
u(t) 8/2m3/2T3/2\/m (4.22)

In the second step we used the 4-component of (3.2), in the
third step we introduced the asymptotic formulae (4.16),
(4.17) for the special case where z lies on the line con-
necting x and y. In a* we only need to consider the index
A = 4 which gives a leading factor (—m) from the differ-
entiation of e=™7. All other contributions are suppressed
by higher powers of 1/m. In "o, only spatial indices
1 = m,v = n survive if we concentrate on the diagonal
part of the Dirac matrices. The transition to 2 x 2-matrices
then gives

in the axial vector (3.12):
aMPYS’Vu = 6mn4ank75'ym = €mnkEnkOm = 2850 m,
in the tensor (3.13):

"0 = FrnOmn = €mnkFmnor = 2Bro,. (4.23)
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Both contributions give identical magnetic field insertions
which add up.

The resulting expressions have to be combined with
the leading term (4.21) where we can drop the projector
(1+~F)/2. This gives a spin dependent expression of the
form

X exp [—ig /; Adz} (1+ i/B(t)sdt). (4.24)

If we take the product of the quark- and the antiquark
propagator which arises in the four-point Green function,
focus on the product term of the two magnetic field inser-
tions, and extract the Hamiltonion in the usual way [3], [4],
we immediately obtain the spin spin and the tensor terms
with the correct representations for the corresponding po-
tentials V; and V3. In the static approach these terms only
arise as higher order corrections.

Spin orbit terms are momentum dependent and there-
fore involve moving quarks. These are, of course, contained
in our formalism, but the derivation is slightly more com-
plicated. Spin independent corrections are obtained even
harder. Therefore we will not discuss those in this first
application, but be content with the simple and correct
derivation of spin spin and tensor terms given above.

5 Conclusions and outlook

Let us first compare our representation (2.3), (3.9)-(3.13)
with the static approximation (1.8). The static approxi-
mation is, drastically speaking, completely wrong every-
where. It is completely wrong for x # y where it vanishes,
but it is also completely wrong for x = y because it has
a d-function there which is not present in the exact prop-
agator. These features survive if one treats the neglected
spatial part iy™D,, in the field equation as perturbation.
In any finite order of this perturbation the approximated
propagator vanishes for x # y, while higher order deriva-
tives of 5 (x—y) appear. The miracle that one can never-
theless obtain useful results from this propagator is due to
the fact that the perturbation series turns out to become
an expansion with respect to 1/m. As long as (p?/m?) is
small, the results are reliable.

The propagator proposed in the present work is mani-
festly covariant and appears to have a reasonable structure
everywhere. This advantage is payed by a more compli-
cated form, which, however, looks very natural physically.
Not only one path ordered integral, but a whole set of
them contribute. We saw how the paths near the straight
line connection dominate for large mass. We believe that
it will also be possible to get useful information for finite
mass. For an investigation of the quark-antiquark interac-
tion one should start, as usual, with the gauge invariant qq
four-point Green function and integrate out the fermion
fields. Instead of the familiar Wegner-Wilson loop one will
now obtain a superposition of loops where the straight
paths in time direction are replaced by the stream lines
making up our propagator. Quite a lot of knowledge how
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to treat such loops has been accumulated by various au-
thors which can be used for this investigation.

A comparison with the Feynman-Schwinger represen-
tation (see e.g. [8]) is also instructive. This representation
of the propagator is formally exact and has essentially
the form of a quantum mechanical Green function. It can
therefore be written as a path integral. In the literature
[9] one also finds approximate path integral representa-
tions for the propagator and the quark-antiquark kernel
valid up to order 1/m?2. In both cases one has, as usual
in this formalism, a sum over all paths, which is, concep-
tionally as well as technically, a rather delicate concept.
Even for rather simple situations the path integral cannot
be evaluated. In our case, on the other hand, we have only
line integrals along a well defined set of field lines. This is
a much simpler situation. Our representation stands just
between approximations which involve a single path only
and those requiring a sum over all paths.

Besides the application of the present propagator for
large as well as for finite mass, there is another topic which
should be worked out. This is the systematic improve-
ment of our propagator. We don’t have a simple differen-
tial equation for it, as it is available in the case of the static
propagator. Therefore one probably has to improve higher
orders of perturbation theory directly and transform them
into gauge covariant expressions in an analogous way as
done here for the first order. We emphasize, however, that
such an improvement does not appear necessary for many
purposes. The present form gives already the correct rela-
tivistic energy of a free particle together with the correct
spin projectors. Furthermore we have seen that it gives
the correct spin-spin and tensor forces for heavy quark-
antiquark systems. To get these "relativistic corrections”
from the static propagator one has to make quite compli-
cated manipulations. We expect that all other relativistic
corrections can also be obtained with some more effort.

Therefore there are good reasons to believe that the
suggested expression for the propagator will turn out quite
useful already in it’s present form.
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